a2 United States Patent

US009336289B2

(10) Patent No.: US 9,336,289 B2

Dave et al. (45) Date of Patent: *May 10, 2016
(54) DATA FEEDS PLATFORM (52) US.CL
) CPC ..ot GO6F 17/30563 (2013.01)
(71) Applicant: Morgan Stanley, New York, NY (US) (58) Field of Classification Search
. . . . CPC GOG6F 17/30292; GOGF 17/30; GOGF
(72) Inventors: Bhav.ln P. Davg, Mumbai (IN); Amit S. 17/30595; GOGF 17/30011; GOGF 17/30867
Modi, Mumbai (IN) o .
See application file for complete search history.
(73) Assignee: 1(\{Ij(s))RGAN STANLEY, New York, NY (56) References Cited
)) o) U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 2012/0194362 Al 82012 Fallon et al.
US.C.154(b) by 0 days. Primary Examiner — Truong Vo
This patent is subject to a terminal dis- (74) Attorney, Agent, or Firm — Weitzman Law Offices,
claimer. LLC
(21) Appl. No.: 14/602,674 (57) ABSTRACT
. A data feeds platform, comprising a data feed using a data
22) Filed: Jan. 22, 2015 ’
(22) File =2 feed protocol. The data feed protocol comprises, a feed
(65) Prior Publication Data header defining at least one identification attribute, a data
header defining a data structure comprising data nodes, each
US 2015/0134595 Al May 14, 2015 data node corresponding to a subset of the data, and a data
A section, the data section storing the data according to the data
Related U.S. Application Data structure. A plurality of heterogeneous data protocols is
(63) Continuation of application No. 13/795,572, filed on stored. A data input is received in one of the plurality of
Mar. 12, 2013, now Pat. No. 8,972,452. heterogeneous data protocols. The data input is converted to
the data feed protocol, creating the data feed.
(51) Imt.ClL
GOG6F 17/30 (2006.01) 2 Claims, 21 Drawing Sheets
External External External External

System 110a System 110b

System 110c System 110d

100

\

DATA FEEDS PLATFORM

Data Feed Protocot
105

Inbound Data Hub
120

Outbound Data Hub
130

Alerts and
Notifications 135

Data Feed
Preparation 140

Acknowledgement
Management 145

Data Change Event

Listener 150

Data Delivery 155

User Modute 160

Warehouse 115

Database 125

Externat
System 165a

External
System 165b

External
System 165c

Externat
System 165d

U.S. Patent May 10, 2016 Sheet 1 of 21 US 9,336,289 B2

External External External External
System 110a System 110b System 110c System 110d

100

N

DATA FEEDS PLATFORM
Data Feed Protocol
105
Inbound Data Hub Outbound Data Hub Alerts and
120 130 Notifications 135
Data Feed Acknowledgement Data Change Event
Preparation 140 Management 145 Listener 150
Data Delivery 155 User Module 160

Warehouse 115 Database 125

External External External External
System 165a System 165b System 165¢ System 165d

FIG. 1

U.S. Patent May 10, 2016 Sheet 2 of 21 US 9,336,289 B2
"FULL" DATA FEED PROTOCOL
105 205
— DATA FEED HEADER !
k‘ Feed Name Scope As-Of-Date Feed Type
230 235 240 245
AttempNum ChunkNum NumChunks PartNum
250 255 260 265
210
DATA HEADER
Level 231 Name 232 Structure 233 J
Level 231.1 Name Structure
Level 231.2 Name Structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 215
| FEED DRIVER :
: Level Name Keys 236 F—J
| |
| Level Name Keys |
| !
| Level Name Keys |
g ——— J
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 220
! ACKNOWLEDGEMENT DRIVER ’
I] /
: Level Name Acknowle%%e;ment Keys ;
l !
: Level Name Acknowledgement Keys :
R ——— B S o e ——— i
225
DATA
Level Name Data 246 J
Level Name Data
Level Name Data

FIG. 2A

U.S. Patent May 10, 2016 Sheet 3 of 21 US 9,336,289 B2

START
2000
L——— Define, using the data feed protocol, a new
type of data feed
2005 ‘

\ Based on a batch mode schedule, initiate
the feed generation lifecycle

2010 *

-

Generate the header values for the feed

2015 ‘

\ Retrieve information from one or more
heterogeneous data sources

2020 ‘
\ Retrieve the protocols necessary to decipher
information received from external systems

2025 *

\ Convert the data to the data feed protocol
based on the known retrieved protocol

2030 ‘
k____ Deliver the data to the data warehouse

v

2035 Store the data in the data warehouse
_ {creating a new entry for new data, or
overwriting for old data)

2040
| Receive acknowledgements from the data
warehouse
END

FIG. 2B

U.S. Patent May 10, 2016 Sheet 4 of 21 US 9,336,289 B2

START
2045
L—— Define, using the data feed protocol, a new
type of data feed
2050 ‘

\ External source publishes information; one
of the publishing events triggers the new
data feed

2055 ¢

-

Generate the header values for the feed

heterogeneous data sources corresponding
to the protocols

2065 *

\ Retrieve the protocols necessary to decipher
information received from external systems

2070 ‘

\ Convert the data to the data feed protocol
based on the known retrieved protocol

2075 ‘

L—— Deliver the data to the data warehouse

2080 Store the data in the data warehouse

(N (creating a new entry for new data, or
overwriting for old data)

2085 ¢

| Send acknowledgments back to the data
feed platform

v

END

FIG. 2C

US 9,336,289 B2

Sheet 5 of 21

May 10, 2016

U.S. Patent

—

114>

€ 'Old

j\ ove

20IA18S QoM

O

d1d4S

+

TL

WI\ |eay JeapN

owi|

yoreqd
R

Gece

t

* GlLE

d334 viva vii3a

B

0LE

0ee

d14S

B

0ge

yored

B

%

GLE

azaad viva 1ind

B

G0¢e

U.S. Patent May 10, 2016 Sheet 6 of 21 US 9,336,289 B2
DELTA DATA FEED PROTOCOL
405 205
o DATA FEED HEADER ,
K‘. Feed Scope As-Of-Date Feed Type
Attempt # ChunkNum NumChunks Part Num
210
DATA HEADER
Level 410 Name Action 405 Structure _J
Level Name Action Structure
Level Name Action Structure
215
FEED DRIVER
Level Name Keys __j
Level Name Keys
Level Name Keys
220
ACKNOWLEDGEMENT DRIVER /
Level Name Acknowledgement Keys
Level Name Acknowledgement Keys
225
DATA
Level 410 Name Action 405 Data J
Level Name Action Data
Level Name Action Data

FIG. 4

U.S. Patent May 10, 2016 Sheet 7 of 21 US 9,336,289 B2

FULL INSERT / UPDATE / DELETE
(VALID UNTIL NEXT UPDATE)

500

L__ Indicate on the data feed protocol for
the feed that it is a "full" update, and
is "valid until the next update"

505 l

Mark all data sets as "inactive"

510

(Update all indicated data sets

specified as inactive (insert/delete/
update operations completed
automatically as a result)

l

END

FIG. 5A

U.S. Patent May 10, 2016 Sheet 8 of 21 US 9,336,289 B2

FULL INSERT / UPDATE / DELETE
(VALID FOR EFFECTIVE DATE)

515

L___ Indicate on the data feed protocol for
the feed that it is a "full" update, and
is "valid for effective date”

520 l

Mark all data sets having the
effective date as "inactive"

525

l Update all data sets specified as
inactive are updated with

corresponding data from the data
feed

l

END

FIG. 5B

U.S. Patent May 10, 2016 Sheet 9 of 21

DELTA INSERT / UPDATE / DELETE
(VALID UNTIL NEXT UPDATE)

530

L___ Indicate on the data feed protocol for
the feed that it is a "delta" update,
and is "valid until next update"

535

(Indicate in the data-feed protocol for
a particular data feed whether a data

set is to be updated or deleted in the
"action" field

540

L‘ Update or delete the appropriate
data sets based on the status of the
action field for the particulate record

END

FIG. 5C

US 9,336,289 B2

U.S. Patent May 10, 2016 Sheet 10 of 21 US 9,336,289 B2

DELTA INSERT / UPDATE / DELETE
(VALID FOR EFFECTIVE DATE)

545

L__. Indicate on the data feed protocol for
the feed that it is a "delta" update,
and is "valid for effective date”

550 l

(Indicate in the data-feed protocol for
a particular data feed whether a data

set is to be updated or deleted in the
"action" field

555 l

Mark all data sets having the
effective date as "inactive"

560

L_ Update or delete "inactive" data sets
based on the status of the action field
for the particulate record

END

FIG. 5D

US 9,336,289 B2

Sheet 11 of 21

May 10, 2016

U.S. Patent

0e9

g9

74

G19

019

G09

ey WG S

Sr PRy

Hcdi SR o B

OOO@ SgHen Ly Wy

US 9,336,289 B2

Sheet 12 of 21

May 10, 2016

U.S. Patent

o)
(1=}

[1e]
O

g

AR R

ERmeTay

ey g

cosgisn g

US 9,336,289 B2

Sheet 13 of 21

May 10, 2016

U.S. Patent

[
(7=

G99

B SRR i3 A R aagy

BT

R Lo T

LT DR DR

P Y

028 7 N
.A

SRR FERRATG
B I TS

PR 3 el

D R e]

PRI R

40Ty POHOY
TR SR AR i g A s

LR AR,

EEREE PETE TR Ry P

SRRCS ARG A oyl T

T ROUBERBHUTS PO

RN W

DGRt e S

US 9,336,289 B2

Sheet 14 of 21

May 10, 2016

U.S. Patent

g R QA S ey
e e N R e e Fe AR g e 52 33 i Wy

R

g ey

s Frs
w3 W

s

o RNy g

US 9,336,289 B2

Sheet 15 of 21

May 10, 2016

U.S. Patent

i RO,

SR

ST

US 9,336,289 B2

Sheet 16 of 21

May 10, 2016

SOILEINLIY HEIA ¥ WGIY Y vonmmbuay pEeg

U.S. Patent

U.S. Patent May 10, 2016 Sheet 17 of 21 US 9,336,289 B2

6020

FIG. 10

i
onfiguratios
Fnd

X

_-:-'.-'.-'E -'E,-' I},-'E.-'E
Foed

3

o !J'EJ'!J'!.:'.-'EJE
B

e

o

el

600

oy ¥

Faud Duliv

US 9,336,289 B2

Sheet 18 of 21

May 10, 2016

U.S. Patent

009 —
Sl

A e .".«n}

et S P SREeLE M

TR Bty SREECS LR O

Es u".\ A R TR ﬁ»

L RGE R e
HEE Y BEEY BB

Y s e gy

ey a9

TR
SRR

0cL

ST Rl R T

%%%%

US 9,336,289 B2

Sheet 19 of 21

May 10, 2016

U.S. Patent

Old

BATY

LYY
BHREL S
BRELL BELE
NELE e
RELR A e
TERETSY BT

33 AR Ry

5 R

g AR

TR Rt e Ry

iy Ry
AATII R W g

sAsturimg Beay v

Ay SRy

AR ER it

TESEIRERT
AHELY
TERET
BELAYREEY L TR-EYNY
TERYTOE

BT
TR SR
e g P
TPy e PERY

AR R g

WETEG
S
SEITIIOY

s TN Rt TR W
SERGES

L HHOy X

TTEOTEDT FBE TN B ARIDGR

3

ESERE

g

sRoponyg Huos

TS TNy

STEES S

TERRAED RO

Ry g pEad

US 9,336,289 B2

Sheet 20 of 21

May 10, 2016

U.S. Patent

€1L°Old

47

e s S i R
EE e e

el

g

waRn

SRERESAR ST

RS

sy wyndly g

1S4

US 9,336,289 B2

Sheet 21 of 21

May 10, 2016

U.S. Patent

vi

Old

RS W

WG

US 9,336,289 B2

1
DATA FEEDS PLATFORM

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/795,572, entitled “Data Feeds Platform,”
filed Mar. 12, 2013, which is incorporated herein by refer-
ence.

BACKGROUND

1. Field

This disclosure relates generally to multiple computer sys-
tems and process coordinating, and, more particularly, to
computer-to-computer data modification.

2. Background

Entities often utilize centralized data servers to house
information. These centralized data servers may need to inter-
act with any number of external heterogeneous systems.
However, the heterogeneous systems may utilize different
data protocols, or have alternate means of performing actions
on the data. The centralized data servers may therefore be
required to accommodate a large number of different data
formats and action representations. Data flow management
for the centralized server is also left to independent imple-
mentation, often utilizing ad-hoc solutions. As a result, these
systems may lack sufficient functionality for controlling the
granularity of data updates, issuing alerts and notifications,
identification of data flows, and tracking the life cycle of data
flows.

BRIEF SUMMARY

In one aspect of this disclosure, a method of implementing
a data feeds platform utilizing a data feed protocol is dis-
closed, the method comprising receiving, using a processor,
data in one of a plurality of heterogeneous data protocols.
Identifying information is extracted from the data and the
extracted identifying information is stored in a feed header of
a new data feed, the extracted identifying information corre-
sponding to a type of identifying information specified for
inclusion in a data protocol of the new data feed. Subsets of
the data are organized according to a data structure, each
subset corresponding to a data node of the data structure
defined in a data header of the data protocol of the new data
feed. The data is stored in a data section of the data feed. The
new data feed is transmitted to a data warehouse.

In another aspect of this disclosure, a data feeds platform is
disclosed, comprising a computer processor, and computer
memory, within which is defined a data feed protocol. The
data feed protocol comprises a feed header, the feed header
defining at least one identification attribute of the data feed, a
dataheader, the data header defining a data structure of datato
be transmitted in the data feed, the data structure comprising
data nodes, each data node corresponding to a subset of the
data, and a data section, the data section storing the data
according to the data structure defined in the data header. The
computer memory contains program instructions, which,
when executed, causes the computer processor to store a
plurality of heterogeneous data protocols. A data input is
received in one of the plurality of heterogeneous data proto-
cols. The data input is converted from the one of the plurality
of heterogeneous data protocols to the data feed protocol,
creating the data feed. The data feed is sent to a data ware-
house.

10

25

35

40

45

50

55

2

The foregoing has outlined rather generally the features
and technical advantages of one or more embodiments of this
disclosure in order that the following detailed description
may be better understood. Additional features and advantages
of this disclosure will be described hereinafter, which may
form the subject of the claims of this application.

BRIEF DESCRIPTION OF THE DRAWINGS

This disclosure is further described in the detailed descrip-
tion that follows, with reference to the drawings, in which:

FIG. 1 is a high level representation of an illustrative data
feeds platform;

FIG. 2A is a high level representation of an illustrative
“full” data feed protocol data structure;

FIG. 2B and 2C is a flow chart representing an illustrative
sequence of steps for implementing the conversion and stor-
age of data according to the data feed protocol;

FIG. 3 is a high level representation of “full” data feed and
“delta” data feed updating strategies, and the respective mes-
saging services used with each;

FIG. 4 is a high level representation of a “delta” data feed
protocol data structure;

FIGS. 5A-5D are flow charts representing illustrative
sequences of steps for implementing “full” data feed and
“delta” data feed updating; and

FIGS. 6-14 are screen shots of an illustrative software
wizard that may be used to configure the data feeds platform
and data feed protocol.

DETAILED DESCRIPTION

This application discloses a data feeds platform that uti-
lizes a data feed protocol to standardize stored information
that may be received in a plurality of heterogeneous formats
and protocols. The data feed protocol enables meta-data
driven data flow definition, delivery, and tracking By inter-
posing a data feeds platform and protocol between external
systems and the centralized data system, each external system
can send its data in its native form and format without regard
to the centralized data system or other systems to which that
data might later be provided, avoiding the need to individu-
ally account for the semantics of representing data, the rep-
resentation of actions performed on the data, or a potentially
large number of diverse critical monitoring systems. The data
feeds platform and data feed protocol greatly facilitate the
creation and operation of meta-data-driven centrally-man-
aged data warehouses by supporting standard representation
of'data, standard representation of actions performed on data,
support for controlling the granularity of actions and update
operations, unique identification of data feeds, and support of
intersystem acknowledgement (or non-acknowledgement)
handshakes.

FIG. 1 is a high level representation of an illustrative data
feeds platform 100 utilizing the data feed protocol 105. The
data feeds platform 100 is configured to receive data from
illustrative external systems 110a-110d, convert them to the
format defined within and dictated by the data feed protocol
105, and then send them to the data warehouse 115 for stor-
age. The transmitted and converted data is treated as a data
“feed,” or a discrete body of information having an internal
structure defined by the data feed protocol. The external sys-
tems 110a-110d4 may represent any number of external het-
erogeneous systems having any number of diverse formats
and information formats. The data feeds platform 100 has the

US 9,336,289 B2

3

required data format information to allow the data feeds plat-
form 100 to receive and translate the information into the data
feed protocol 105.

The data feeds platform 100 may have other functional
modules according to the user’s required utility. An inbound
data hub 120 may centralize the receipt of data from external
systems 110a-1105 or from the data warehouse 115. An out-
bound data hub 130 may centralize the transmission of data to
external systems 110a-1105 or the data warehouse 115. An
alerts and notifications module 135 may manage the genera-
tion and transmission of alerts and notifications to relevant
parties. For example, a certain data trigger may cause the data
change event listener 150 to activate the alerts and notifica-
tions module 135 to generate an e-mail alert to an adminis-
trator that the listened-for event has occurred. A data feed
preparation module 140 may prepare outbound data feeds for
transmission outside systems, such as the external systems
165a-1654, which may represent another group of heteroge-
neous systems (which may overlap with the external systems
110a-11d) having any number of disparate information for-
mats. The data feed preparation module 140 may therefore
translate information from the data feed protocol to whatever
external format is required for each respective external sys-
tem 165a-165d. An acknowledgement module 145 may gen-
erate acknowledgements to be sent by the data feeds platform
100 to acknowledge the receipt of data from other systems. A
data change event listener module 150 may be set to listen for
particular events in incoming data, and trigger the appropriate
response when those events are detected. A data delivery
module 155 may coordinate the insertion of data records into
the database 125. A user module 160 may allow administra-
tors to monitor status, issue commands and otherwise admin-
istrate the operation of the data feeds platform 100.

The data warehouse 115 represents a centralized or decen-
tralized data repository as may be desired for the particular
implementation. Once the information from the external sys-
tems 110a-110d has been converted to the data feed protocol
105, it is sent to the data warehouse 115 for storage and
processing. The data warehouse 115 contains a database
module 125 for the storage of data.

FIG. 2A is a high level representation of an illustrative
“full” data feed protocol 105 data structure. This protocol is
used when the entirety of a feed is to be stored, as opposed to
a “delta” protocol, which will be described later. The full data
feed protocol 105 is a pre-defined information format that is
used to define and store any kind of data feed involving any
kind of data. The full data feed protocol 105 is formed from at
least four parts, a data feed header 205, a data header 210, a
feed driver 215, and an acknowledgement driver 220. The
data feed header 205 contains attributes that form a unique
identification tuple for a data feed. The data header 210
defines the structure of the data, and the relationships between
related sets of data. The feed driver 215 defines the granular-
ity at which executable actions are controlled.

The data feed header 205 contains attributes that form a
unique identification tuple for a data feed. For example, a feed
name 210 attribute may specify a name for the to-be-defined
data feed. The name may be selected from any desired source
or citation. For example, the name may be set as the data type
that the data feed will be transmitting. A scope 215 attribute
may define whether the feed is “valid until the next update” or
“valid for the effective date,” indicating whether the underly-
ing data is valid until a further update is received for the data,
or that the underlying data is valid only for a particular effec-
tive date. An as-of-date 220 may specify an effective date; for
example, an effective date may be simply the date on which
the data is being transmitted, or was retrieved. A feed type 225

10

15

20

25

30

35

40

45

50

55

60

65

4

may indicate whether the data feed is to be transmitted in
“full” or “delta” modes. When used in conjunction with the
scope 215, this delineates the underlying executable action
strategy for update, delete and insert operations, the four
possible variations being “full” with “valid until the next
update,” “full” with “valid for the effective date,” “delta” with
“valid until the next update,” and “delta” with “valid for the
effective date”” These will be described in greater detail
below. A part number 265 may indicate (for “delta” data
feeds) the number of “delta” feeds that have transpired thus
far for the current data feed and for a given as-of/effective date
240, the number incrementing by one each time a “delta” feed
is transmitted. An attempt number 250 may identify the cur-
rent number of delivery attempts. A chunk number 255 may
be utilized when a data feed has to be split into multiple files
due to size limitations. A number of chunks 260 may indicate
the total number of chunks the data feed field was split into.

As shown, the data header 210 defines the structure of the
data, and the relationships between related sets of data. For
example, a feed file may contain multiple data sets or data
nodes. Each data set may have a different structure that may
or may not be similar to any other data set within the feed.
Therefore, each data set within the feed is identified as a level
(such as level 231) having its own identifier, name 232 and
data structure 233. The structure 233 may be defined by any
desired format, including, but not limited to, comma-sepa-
rated values. If data sets are related to one another, then the
levels may be defined in a hierarchal manner. If they are not
related, the levels may be designed as unrelated, in which case
the overall structure of may be said to be “flat.”

Ifthe levels are defined in a hierarchal manner, a “tree” data
structure is defined by the relationship between the different
levels. Level 231 may therefore define a data set that may
correspond to, for example, a topmost node of a hierarchal
tree. Level 231.1 may correspond to a first sub-node data set
of'level 231, being one level lower than level 231 and having
nodelevel 231 as its parent node. Level 231.2 may correspond
to a second sub-node of level 231, being on the same level as
level 231.1, and also having level 231 as its parent node.
Sub-nodes level 231.1 and 231.2 may have further sub-nodes,
as desired. For example, level 231.1 may have sub-nodes
231.1.1, 231.1.2, etc. In this manner, any hierarchal organi-
zation of data may be represented in the data feed protocol
105. Of course, different levels may also be unrelated, if the
represented data sets are unrelated.

The feed driver 215 optionally defines the granularity at
which executable actions are controlled. For example, if a
level definition is such that it contains characteristics for a
financial portfolio, including all its holdings, the feed driver
215 (if set as the identification for the financial portfolio level)
would allow executable actions to treat the entire financial
portfolio (including its holdings) as one single atomic unit of
work for the purpose of executable actions. Feed driver 215
therefore contains any number of keys 236 for an executable
action that specifies the level(s) 231 (defined in the data
header 210) that should be treated as atomic units for the
purposes of executable actions.

The acknowledgement driver 220 optionally allows speci-
fication of specific circumstances in which an acknowledge-
ment should be generated, beyond a standard/generic
acknowledgement. The acknowledgement driver 220 con-
tains an acknowledgement key 241 field. Levels to be
included in an acknowledgement are specified in the
acknowledgement key 241 field. For example, if the acknowl-
edgment driver 220 has a key in its key 241 field, specifying
the financial portfolio level described above, then any time an
action is performed upon the financial portfolio levels or its

US 9,336,289 B2

5

sub-levels, an acknowledge will be generated. The resulting
acknowledgement may include all individual financial port-
folio data sets that were altered as a result of actions per-
formed by the transmission of the data feed.

The data 225 contains the actual relevant data 246 for each
level. Each row in the data 225 starts with a level and name
that identifies the data set or level to which the row is a
member.

FIG. 2B is a flow chart representing an illustrative
sequence of steps for implementing the conversion and stor-
age of data according to the data feed protocol 105 and data
feeds platform 100 under a “pull” mode, in which data feeds
are generated based on an internal schedule set on the data
feeds platform 100. First, a new data feed is defined using the
data feed protocol 105 (step 2000). Subsequently, based on a
schedule for the generation of new data feeds (such as a
“batch mode” schedule), the data feed generation for the new
data feed is initiated (step 2005). Header values, such as the
feed name 230, scope 235, and as-of/eftective date 240, are
generated for the new data feed instance (step 2010). Once the
basic structure of the data feed is ready, information to be
structured within the new data feed is retrieved from the
external heterogeneous data sources 110a-110d (step 2015).
Protocols necessary to decipher the retrieved information are
then retrieved from the relevant external system (step 2020).
The retrieved information is then converted and stored in the
data feed according to the data feed protocol 105 based on the
retrieved protocol (step 2025). The data, now structured
according to the data feed protocol 105, is delivered to the
data warehouse by transmitting the populated data feed
instance to the data warehouse 115 (step 2030). The data feed
is preferably stored by the data warehouse 115, either as anew
entry in the case of new data, or overwriting old data if it is an
update (step 2035). Finally, the data feeds platform 100 may
receive an acknowledgement from the data warehouse 115
confirming that the data feed was received and stored (step
2040).

FIG. 2C is a flow chart representing an illustrative
sequence of steps for implementing the conversion and stor-
age of data according to the data feed protocol 105 and data
feeds platform 100 under a “push” mode, in which data feeds
are generated based on events occurring on external systems
which may trigger the generation of data feeds. First, a new
data feed is defined using the data feed protocol 105 (step
2045). Subsequently, the data feeds platform 100 may detect
that one or more external data sources 110a-1104d has pub-
lished information that triggers the generation of the new data
feed (step 2050). Header values, such as the feed name 230,
scope 235, and as-of/eftective date 240, are generated for the
new data feed instance (step 2055). Once the basic structure
of the data feed is ready, information to be structured within
the new data feed is retrieved from the external heterogeneous
data sources 110a-1104 (step 2060). Protocols necessary to
decipher the retrieved information are then retrieved from the
relevant external system (step 2065). The retrieved informa-
tion is then converted and stored in the data feed according to
the data feed protocol 105 based on the retrieved protocol
(step 2065). The data, now structured according to the data
feed protocol 105, is delivered to the data warehouse by
transmitting the populated data feed instance to the data ware-
house 115 (step 2070). The data feed is preferably stored by
the data warehouse 115, either as a new entry in the case of
new data, or overwriting old data if it is an update (step 2080).
Finally, the data feeds platform 100 may receive an acknowl-
edgement from the data warehouse 115 confirming that the
data feed was received and stored (step 2085).

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 3 is a high level representation of “full” data feed 305
and “delta” data feed 310 updating strategies, and the respec-
tive messaging services used with each. For “full” data feeds,
the feed contains the entire relevant universe of data for the
data feed. Because the “full” data feed represent the complete
dataset for the given source, “batch” mode transmission 315
is preferred. Under batch mode transmission 315, the data
feed is scheduled to run at periodic intervals, which may be
scheduled by time, or conditioned upon a specific event. The
data feed may be prepared by extracting data from the under-
lying data sources (such as the external systems 110a-1104)
at the desired time or upon detection of the desired event,
processed, and then transmitted to the data warehouse 115.

For “delta” data transmissions 310, the feed contains only
those portions of the universe of “full” data feed data that are
changing, such as due to an update, insert or delete action.
“Delta” data transmissions 310 may be transmitted in either
“batch” mode 315 or “near real time” mode 325. “Near real
time” mode 325 is an event-driven model for delivery of
alterations of data in the data feed to the data warehouse 115.
The occurrence of pre-specified events causes the upload of
data feeds communicating the events to the data warehouse
115. For example, a significant change in the price of an
important asset may cause a data feed to be created which will
update the price of the important asset in the data warehouse
115. For some types of data updates may occur very rapidly.
For example, the important asset may be a stock, which is
constantly in flux during a trading day. Therefore, the under-
lying source system must have the capability to publish a
large number of events indicating that a data change has
occurred. The events indicating that a data change has
occurred should have the appropriate identifiers to extract
more detailed information from the external system or sys-
tems 110a-110d. The data change event listener 150 may be
utilized by the data warehouse 115 to listen for events indi-
cating that a data change has occurred. Once such an event is
detected, it may draw the necessary data from the relevant
external system or systems 110a-1104, have it processed by
the data feeds platform 100 and store the resulting data feed.

A number of different messaging services may be utilized,
such as Secure File Transfer Protocol (“SFTP”’) 330, Message
Queue (“MQ”) 340 or a Web Service request 345. For SFTP
330 messaging service utilization, the data feed may be pack-
aged into a SFTP 330 feed file, with a name derived from the
unique identification tuple data feed header 205, containing
the feed data according to the data feed protocol 105
described above. The SFTP 330 feed file may be split into
multiple files if there are size constraints on the receival of
data.

For MQ 340 messaging service utilization, the data feed
may be packaged into a MQ 340 message, embedded into the
“CDATA” section of a root Extensible Markup Language
element. The feed identifiers from the data feed header 205
may be included in a MQ 340 message header (besides being
present within the feed itself). As with the SFTP 330 feed file,
the MQ 340 message may be split into multiple messages if
there are size restrictions. The MQ 340 messaging service
may be used beneficially for “delta” data feed transmissions
310 operating in “near real time” updating 325, because
“Delta” data feeds contain updated data that comes in rela-
tively small-sized data chunks, and MQ 340 operates effi-
ciently with small data chunks.

Web Service requests 345 may be utilized to package the
information in a data feed, embedded into the “CDATA”
section of a root Extensible Markup Language element (as
with the MQ 340 messaging service). Again, the Web Service
request 345 call may be split into multiple requests if size

US 9,336,289 B2

7

restrictions make the desired data feed too large for a single
transmission. Web Service requests 345 may be typically
used with “delta” data feeds 310 operating in “near real time”
updating 325, because, as with the MQ 340 message service
utilization, the web service requests 345 operate well with
small chunks of data.

FIG. 4 is ahigh level representation of the “delta” data feed
protocol 405 referenced above. The “delta” data feed protocol
data structure 405 is essentially the same as the standard or
“full” data feed protocol 105, having the same basic structure
of a data header 210, feed driver 215, acknowledgement
driver 220 and data 225. The only deviation is the addition of
an “action” column 405 in the data header 210 and the data
section 225. The “action” column 405 contains a value indi-
cating what action is to be taken on the relevant data set
specified by the level 410. The action column preferably has
at least two possible values. As shown, the first value is
“update,” which designates an update or insert operation,
wherein the information within the identified data set is to be
updated or have new information inserted. The second value
is “delete” which designates a delete operation, wherein the
information within the data set may be, for example, removed
entirely from the data warehouse 115 or marked as deleted or
inactive.

FIG. 5A-5D are flow charts representing illustrative
sequences of steps for implementing “full” data feed and
“delta” data feed updating 305 and 310. FIG. 5A illustrates an
illustrative sequence of steps for implementing updating of a
data feed when the feed is marked for “full” data feed update
operations 305 which are indicated “valid until next update”
in the “scope” field 235 (step 500). All indicated data sets are
marked inactive (step 505), and all inactive data sets are
overwritten by the incoming data feed. Any insert, delete or
update operations will be completed as a byproduct of the full
data set being overwritten by the new incoming data set of the
inbound data feed, regardless of whether there was an actual
change in the underlying data.

FIG. 5B illustrates an illustrative sequence of steps for
implementing updating of'a data feed when the feed is marked
for “full” data feed update operations 305 which are indicated
“valid for effective date” in the “scope” field 235 (step 515).
Here, not all data sets are marked as inactive. Only data sets
with the specified effective date (specified in the “as-of-date”
field 240) are marked as inactive (step 520). Then, all data sets
specified as inactive are updated with the data contained in the
inbound data feed (step 525).

FIG. 5C illustrates an illustrative sequence of steps for
implementing updating of'a data feed when the feed is marked
for “delta” data feed update operations 310 which are indi-
cated “valid until next update” in the “scope” field 235 (step
530). Data sets that are to be updated or deleted are marked
with the appropriate value in the “action” 405 field (step 535).
The data sets are then updated according to the value in the
“action” 405 field (step 540). Data sets having no indicator are
left untouched, data sets having an “update” value are
replaced with new data from the inbound data feed, and data
sets having a “delete” value are marked for deletion, or treated
as deleted (allowing the information is to be retained).

FIG. 5D illustrates an illustrative sequence of steps for
implementing updating of'a data feed when the feed is marked
for “delta” data feed update operations 310 which are indi-
cated “valid for effective date” in the “scope” field 235 (step
545). Data sets that are to be updated or deleted are marked
with the appropriate value in the “action” 405 field (step 550).
All data sets having the desired as-of/effective date are

20

25

40

45

50

60

8

marked inactive (step 555). Then, all data sets marked inac-
tive are altered according to the value in the “action’ 405 field
(step 550).

Still further, as a result of this simplified approach, a soft-
ware wizard may be utilized to configure for the handling of
new data feeds in the format of the data feed protocol 105.
While the data feeds platform 100 and data feed protocol 105
do not require the use of a software wizard, its implementa-
tion may greatly ease the process of creating the specific
protocol for a new data feed, allowing use by laymen with
little computer programming experience. As shown, FIG. 6
represents a screen shot of an illustrative software wizard 600
that is used to configure the data feeds platform 100 and data
feed protocol 105. It is understood that the software wizard
600 described herein s illustrative, and that any configuration
of'asoftware wizard may be utilized as required. The software
wizard 600 guides a user in defining the data feed protocol of
anew data feed. The illustrative software wizard 600 contains
a first “tab” screen 6000 that allows entry of basic data feed
information via data fields. The fields may include the feed
name 605, feed family 610, feed type 615, mapping name
620, scope 625, description 630, direction 635 and expected
runtime 640. Entry of characters into the feed name 605 thus
define the feed name 230. The same is true for the feed type
field 615 (defining the feed type 245), and scope 625 (defining
the feed scope 235). The direction 635 indicates whether the
feed is an outbound feed, inbound feed or an internal feed.
The expected runtime 640 indicates a maximum amount of
time within which the feed should be completed. The map-
ping name 620 may be required if the data feeds are loaded on
external systems; this option allows the data feed to be
mapped to another name for the purposes of operating within
the external environment.

FIG. 7 represents a scheduling tab screen 6005 of the
software wizard 600 that allows configuration of scheduling
information for the relevant data feed. The scheduling tab
screen 6005 allows a user to configure when and how updates
for the data feed should be triggered. For example, time-based
scheduling updates the data universe via the creation and
transmission of a new data feed based on a regular time
interval, conditional scheduling updates the data universe via
the creation and transmission of a new data feed based upon
the fulfillment of a condition (definable within the wizard)
and event-based scheduling updates the data universe via the
creation and transmission of a new data feed based on the
detection of a listened-for event. The selector panel 650
allows a user to select between time-based, conditional or
event-based scheduling. The customization panel 655
changes according to which type of scheduling is desired,
with various options appropriate to customization and con-
figuration of the selected scheduling type appearing in
response to the selection of one of the options.

FIG. 7A represents a sub-tab screen 660 for “run windows”
within the scheduling tab 6005. The run windows sub-tab
screen 660 allows users to define time windows in which a
data feed should complete operations. If the data feed exceeds
the appropriate time boundary, an alert may be raised. A
scheduling option panel 665 allows a user to schedule when
the run window needs to be performed. A time option panel
670 allows a user to configure various options related to the
run window itself, such as the length of time for the run
window, the election of specific as-of-dates 240 to check, data
sets to check from, etc.

FIG. 8 represents a data sources tab screen 6010, which
allows a user to add data sources (e.g., external systems
110a-1104) to the data feed so the systems upon which the
data feed is dependent are known and defined. A data source

US 9,336,289 B2

9

pane 670 allows selection and configuration of different types
of data sources, such as databases, “SOAP” (or Hyperexten-
sible Mark-Up Language) sources, data from computer files,
data from detected events, etc.

FIG. 8A represents a configuration sub-screen for the data
sources tab 6010. Each external system 110a-110d4 may have
specific requirements for interaction. The configuration
screen allows a user to set and define the way in which the data
feed interacts with each external system 110a-110d. An edi-
tor pane 695 may allow a user to enter query or stored proce-
dures for storage and association. A parameter pane 685 may
display a list of parameters that may be supplied to the query
or stored procedure defined in the editor pane 695. A result
pane 690 may display one or more result sets from a recently
executed query.

FIG. 9 represents a feed structure tab screen 6015, which
allows a userto define how data will be represented in the data
feed file under the data header 210. As shown, feed structure
pane 700 contains a listing of feed plans 703, the root of which
may be associated with at least one data resource via a data
resource associator 705 that provides a drop-down menu of
available data resources. As described above, the data struc-
ture may be designed as a hierarchal representation of data.
Therefore, hierarchal levels may be defined under the feed
plan 703.

FIG. 10 represents a delivery configuration tab screen
6020, allowing a user to define one or more delivery modes
and channels for the relevant data feed. A destination type
selector menu 710 allows selection of at least one listed
destination type. A messaging type selector menu 715 allows
the user to select MQ 340, SFTP 330 or Web Service request
345 as the delivery channel for the relevant data feed.

FIG. 11 represents a home tab screen 6025 that allows a
user to monitor different data feeds and their respective sta-
tuses for a selected time period. The feed monitoring dash-
board 720 displays a list of current data feeds and provides a
visual representation of their respective runtimes. A news
board 730 may display useful information, such as informa-
tion, news or announcements related to the usage of the data
feeds platform 100. A statistics board 725 displays various
statistics regarding one or more data feeds. Any organiza-
tional statistics may be generated and displayed herein as
desired by the user.

FIG. 12 represents a monitor tab screen 6030 which
enables searching of historic data feed runs, displaying
detailed information about any selected historical data feed
run. As shown, a search option pane 735 displays various
search fields for historic data feeds by various attributes, such
as feed name, feed family, feed owner, feed status, run status,
start date, end date, effective date, etc. A search results pane
740 displays the results of the search, along with tangential
identifying data, such as the feed family, feed name, feed
status, start time, end time, elapsed time, etc. Selection of one
of'the data feeds displayed in the search results pane 740 may
cause the data feed detail pane 745 to display more specific
information regarding the selected data feed run, when the
run details sub-tab 741 is selected.

FIG. 13 represents a life cycle events screen 742 under the
monitor tab 6030, which shows all lifecycle events that tran-
spired during the operation of the data feed, via the life cycle
event pane 750. The illustrative software wizard may also
contain a feed file acknowledgements tab 752, which may
show all acknowledgements received during the operation of
the data feed, via the acknowledgement pane 755.

FIG. 14 represents a statistics tab 6035, which contains a
number of sub-tabs such as feed run statistic, data volume,
feed execution statistics and lead statistics. Only data volume

15

20

25

35

40

45

55

10

statistics are illustrated here for reference. As shown, a data
volume pane 760 illustrates an analysis of data volume per a
unit of time. A feed health report 765 illustrates the number of
successful data feed runs as measured against a unit of time.
A data feed comparison pane 770 compares compare one unit
of time against another in terms of the number of data feeds
executed. Any other analyses

As discussed above, the data feeds platform and data feed
protocol may be implemented utilizing one or more comput-
ing systems of varying configurations. For instance, the com-
puting systems may be combined as a single computing sys-
tem. Each computing system preferably includes computing
components for executing computer program instructions
and processes. These components may include a central pro-
cessing unit (CPU), memory, input/output (I/O) devices, and
a network interface.

The CPU processes and executes computer program
instructions. Random access memory (RAM) and/or fast
access cache memory preferably provides fast data supply to
CPU. Long-term storage may be provided as a more perma-
nent form of computer memory, and may be, for example, a
hard disk, optical disk, flash memory, solid-state memory,
tape, or any other type of memory.

The I/O device(s) permit human interaction with the com-
puter system, such as (but not limited to) a mouse, keyboard
and computer display. I/O device(s) may also include other
interactive devices, such as (but not limited to) touch screens,
digital stylus, voice input/output, etc.

The network interface device may provide the computing
system with access to a network, which may be a wireless or
wired connection. The network may be, for example, the
Internet, a corporate intranet, or any other computer network
through which the computing system may connect to or oth-
erwise communicate with other computers and databases,
such as (but not limited to) the external systems 110a-110d
and 165a-165d and any other databases represent other com-
puterized systems or databases for specialized information
that may be necessary for implementation of the data feeds
platform 100 and data feed protocol 105.

Software process or processes and executables (such as
those operating on the data feed platform 100 or data ware-
house 115) on the computing system may be used to provide
human interfaces (such as a graphical user interface), and to
store and initiate computer program instructions used to pro-
cess and analyze data. Computer program code for carrying
out operations described herein may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java, C++,
C# or the like and conventional procedural programming
languages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the computing system, partly on the computing
system, as a stand-alone software package, partly on the
computing system and partly on a remote computer or server,
or entirely on a remote computer or server.

This application was described above with reference to
flow chart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to one or more embodiments. It is understood that some or
all of the blocks of the flow chart illustrations and/or block
diagrams, and combinations of blocks in the flow chart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. The computer program instruc-
tions may also be loaded onto the computing system to cause
a series of operational steps to be performed on the computer
to produce a computer implemented process such that the
instructions that execute on the computer provide processes

US 9,336,289 B2

11

for implementing the functions/acts specified in the flowchart
and/or block diagram block(s). These computer program
instructions may be provided to the CPU of the computing
system such that the instructions, which execute via the CPU
of'the computing system, create means for implementing the
functions/acts specified in the flowchart and/or block diagram
block(s).

These computer program instructions may also be stored in
a computer-readable medium that can direct the computing
system to function in a particular manner, such that the
instructions stored in the computer-readable medium imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks. Any combination of one or more
computer usable or computer readable medium(s) may be
utilized. The computer-usable or computer-readable medium
may be, for example (but not limited to), an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, device, or propagation medium. More spe-
cific examples (a non-exhaustive list) of the computer-read-
able medium include the following: an electrical connection
having one or more wires, a portable computer diskette, a
hard disk, a random access memory, a read-only memory, an
erasable programmable read-only memory (e.g., EPROM or
Flash memory), an optical fiber, a portable compact disc
read-only memory, an optical storage device, a transmission
media such as those supporting the Internet or an intranet, or
a magnetic storage device. Any medium suitable for elec-
tronically capturing, compiling, interpreting, or otherwise
processing in a suitable manner, if necessary, and storing into
computer memory may be used. In the context of this disclo-
sure, a computer-usable or computer-readable medium may
be any medium that can contain, store, communicate, propa-
gate, or transport the program for use by or in connection with
the instruction execution system, apparatus, or device. The
computer-usable medium may include a propagated data sig-
nal with the computer-usable program code embodied there-
with, either in base band or as part of a carrier wave. The
computer usable program code may be transmitted using any
appropriate medium, including (but not limited to) wireless,
wire line, optical fiber cable, RF, etc.

Having described and illustrated the principles of this
application by reference to one or more preferred embodi-
ments, it should be apparent that the preferred embodiment(s)
may be modified in arrangement and detail without departing
from the principles disclosed herein and that it is intended that
the application be construed as including all such modifica-

10

15

20

25

30

35

40

45

12

tions and variations insofar as they come within the spirit and
scope of the subject matter disclosed.
What is claimed is:
1. A data feeds platform, comprising:
a computer processor; and
computer memory, within which is defined a data feed
protocol, the data feed protocol comprising:

a feed header, the feed header defining at least one iden-
tification attribute of the data feed,

a data header, the data header defining a data structure of
data to be transmitted in the data feed, the data struc-
ture comprising data nodes, each data node corre-
sponding to a subset of the data, and

a data section, the data section storing the data according
to the data structure defined in the data header;

wherein the computer memory contains program instruc-
tions, which, when executed, causes the computer pro-
cessor to:

store a plurality of heterogeneous data protocols,

receive, using the computer processor, a data input in
one of the plurality of heterogeneous data protocols;

convert, using the computer processor, the data input
from the one of the plurality of heterogeneous data
protocols to the data feed protocol, creating the data
feed; and

transmit the data feed to a data warehouse.

2. A method of implementing a data feeds platform, com-
prising:
receiving, using a processor, data in one of a plurality of
heterogeneous data formats;
based upon a data feeds protocol that specifies a feed
header specifying attributes necessary to identify a new

data feed, the data feeds protocol further specifying a

data header specifying data nodes, the data header delin-

eating an external data structure, each data node having
an internal data structure, the method further including,
using the processor, extracting

a) the specified attributes from the data and storing them
in a new data feed’s feed header, and

b) subsets of the data and organizing them as data nodes,
the subsets having a structure corresponding to the
internal data structure;

storing, using the processor, the data in a data section of the
data feed according to the external data structure of the
data header; and

transmitting the new data feed to a data warehouse.

#* #* #* #* #*

